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a b s t r a c t

This work proposed a non-equilibrium mirror-reflection scheme to implement thermal boundary condi-
tions for the two-distribution lattice Boltzmann method (TLBM). The study showed that the most popular
non-equilibrium bounce-back scheme would become inadequate when the predictions of temperature
gradient were examined in TLBM. This work used the native method in TLBM to verify temperature gra-
dient instead of the conventional finite difference approximation. The simulation results demonstrated
that the mirror-reflection scheme is a scheme of second-order accuracy and can predict the temperature
and temperature gradient correctly. With help of calculating the heat flux on the boundary, this work also
suggested a more efficient and realistic way to determine the Nusselt number in Rayleigh–Bénard con-
vection problems.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recently there are a lot of researches applying the two-distri-
bution lattice Boltzmann method (TLBM) to study thermal sys-
tems [1–3]. They have demonstrated that TLBM is a powerful
numerical tool in solving the temperature distributions. Very
interestingly, however, to the authors’ knowledge, there is no lit-
erature to discuss other important thermal properties like heat
flux. Although basically heat flux can be determined from the
temperature field using the conventional Fourier law, TLBM also
has the capability to calculate the heat flux from the microscopic
point of view. Thus, it is important to verify it from direct calcu-
lations in TLBM. On the other hand, the schemes to impose
boundary conditions are important for numerical methods. The
commonest scheme applied, if not overestimated, for boundary
conditions in TLBM is the non-equilibrium bounce-back scheme
[2–4]. It has shown successes in solving the temperature distribu-
tions. But when further studying the properties of heat flux, one
would realize that the non-equilibrium bounce-back scheme can
cause incorrect results in some cases.

In this work, a new scheme of non-equilibrium mirror-reflec-
tion for thermal boundary conditions is proposed and the proper-
ties of heat flux calculated directly from TLBM are also examined.
The simulation results show that with the new scheme, TLBM
can give better results both in the temperature and heat flux fields
than that with the non-equilibrium bounce-back scheme.
ll rights reserved.
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2. Lattice Boltzmann models

TLBM uses two distributions to describe thermal systems: one
for the velocity field (fi), the other for the temperature field (Ti).
One can refer to [5] for detail descriptions. The heat conduction
is calculated by the deviations from the equilibrium DTi ¼
Ti � Teq

i :
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where s0 is the relaxation time for the temperature field, the super-
scripts eq means equilibrium state, bc and pc denote before collisions
and post-collisions, respectively. Note that DTpc

i ¼ ð1� Dt=s0ÞDTbc
i

has been applied. In this study, Eq. (1) is used to calculate the tem-
perature gradient for different boundary schemes and the D2Q9 lat-
tice is used as illustration.
3. Thermal boundary conditions

Two of the most common thermal boundaries are discussed
here. One is the adiabatic boundary, the other is the isothermal
boundary.
3.1. Adiabatic boundary conditions

The adiabatic boundary conditions require no heat
conduction in the normal direction. For TLBM, it meansP

iðDTiviÞn ¼ 0, where the subscript n denotes the normal direc-
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tion of the boundary. To meet this requirement, the non-equilib-
rium bounce-back scheme [3,2] imposes DTi ¼ DTi0 for the un-
known distributions at boundary nodes, where the subscript i0

indicates the opposite direction ðvi þ vi0 ¼ 0Þ. There are, however,
some problems for this implementation when dealing with cor-
ner nodes. Consider the lower-left corner of a rectangular do-
main as an example. Both T6 and T8 are unknown
distributions. Therefore, this scheme leaves them undetermined
and an additional treatment is needed. Usually the values of the
equilibrium distributions are assigned [3]. Such the assignment
is, in fact, arbitrary.

To avoid such the problem, we propose DTi ¼ DTi� , where i* de-
notes the mirror image part of the velocity vi. With this scheme,
no arbitrary assignment for corner nodes is needed and the
boundary temperature is determined as the same as the interior
nodes. Consider the lower-left corner node again, now both DT6

and DT8 are related to DT7, which value is known from the
streaming processes. We call this implementation as non-equilib-
rium mirror-reflection scheme because for the specular reflection
by the solid surface, vi is the corresponding outgoing direction
of the incoming vi� .
const. temp.: equilibrium, adiabatic BC:mirror–reflection

const. temp.: equilibrium, adiabatic BC:bounce–back
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3.2. Isothermal boundary conditions

For TLBM, the isothermal boundary means
P

iDTi = 0. Mean-
while, constant temperatures on the boundaries also imply no
temperature gradient and therefore no heat conduction along
the boundaries. One scheme used by some literatures is to assign
the equilibrium distributions at the boundary nodes [6,7]. This
implementation would cause the discontinuity of the thermal
properties and temperature jump at boundaries. To see such dis-
continuity, consider the deviation after collision DTpc

i ¼ ð1� Dt
=s0ÞDTbc

i . The equilibrium distribution scheme requires that no
matter what values of DTbc

i are, the equilibrium distribution will
be used for the streaming process, i.e. DTpc

i ¼ 0. Therefore, it re-
quires that s0 = Dt because DTbc

i –0 in general. Since the thermal
diffusivity a depends on s0, it causes discontinuity of thermal
properties.

Another way to meet zero sum of deviations is to impose
DTi ¼ �DTi0 for unknown distributions [2]. This implementation,
however, would not guarantee the heat conduction along the
boundary to be zero. We categorize it as the non-equilibrium
bounce-back scheme because it also involves the pair of
vi and vi0 .

To resolve the above problems, we could apply DTi ¼ �DTi� .
Now the heat conduction along the boundary would vanish. For
example, consider a lower horizontal isothermal plate. The heat
conduction along the horizontal direction calculated by Eq. (1)
becomes zero

1� Dt
2s0

� �
ðDT5 þ DT8Þ � ðDT6 þ DT7Þ½ �bc ¼ 0 ð2Þ

For the same reason, we call this implementation as mirror-reflec-
tion scheme.
const. temp.: bounce–back, adiabatic BC:bounce–back

const. temp.: mirror–reflection, adiabatic BC: mirror–reflection
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Fig. 1. Steady-state temperature profiles next to the upper isothermal boundary.
4. Simulation results

Two benchmark tests are discussed. The first one is a very sim-
ple 1D transient diffusion problem. It demonstrates the assignment
of equilibrium values to unknown distributions at corner nodes
would affect the results. The second is a 2D Rayleigh–Bénard con-
vection problem. It shows that the requirements on both temper-
ature and heat flux can be satisfied if the mirror-reflection
scheme is applied.
4.1. 1D transient heat diffusion problem

Consider the 1D transient heat diffusion problem in a rectangu-
lar box (L � H):

oT
ot
¼ a

o2T
oy2 ð3Þ

BC : Tðx; 0; tÞ ¼ 2; Tðx;H; tÞ ¼ 1; t > 0 ð4Þ
oT
ox
ð0; y; tÞ ¼ oT

ox
ðL; y; tÞ ¼ 0 ð5Þ

Initially the system temperature maintains at 1. This problem has
the analytical solution and linear steady-state temperature profile.
In simulations, set L = H = 20 and then the nodes 21 � 21 (Nx � Ny)
are used.

Fig. 1 presents the steady-state temperature profiles next to the
upper isothermal boundary for Dt/s0 = 0.75. For H = 20, the steady-
state temperature at this location is 1.05. The mirror-reflection
schemes agree with the analytical solutions very well. Because of
improper assignments at corner nodes, the non-equilibrium
bounce-back scheme for adiabatic boundaries predicted nonuni-
form temperature profiles. This is the dominant source of simula-
tion errors. As for the equilibrium distribution scheme for
isothermal boundaries, it would produce the steady state error
due to the non-uniform material properties if Dt/s0 – 1.

Let Er be the square root of the mean square errors compared
with the analytical solutions. In general, Er is inversely propor-
tional to Ns

x, and s denotes the order of accuracy of the simulation
scheme. We calculated three different lattice sizes of 21 � 21,
31 � 31, and 41 � 41 to determine s under eight different Dt/s0.
Fig. 2 presents s as function of Dt/s0. First, note that when Dt/
s0 = 1, all schemes reach the second order of accuracy. Second, for
the local equilibrium scheme for isothermal boundaries, the order
of accuracy is only one. Third, if the bounce-back scheme is applied
for adiabatic boundaries in this benchmark case, the accuracy is
decreasing with increasing Dt/s0. Finally, if the mirror-reflection
schemes are used for adiabatic boundaries, the order of accuracy
can keep two and independent of s0 except the local equilibrium
scheme is applied for isothermal boundaries. This demonstrates
that the non-equilibrium mirror-reflection scheme is better than
the bounce-back one.

4.2. 2D Rayleigh–Bénard convection

The Boussinesq approximation is adopted for the 2D Rayleigh–
Bénard convection with the height H [8]. To make sure that the



Fig. 2. Order of accuracy of different boundary schemes as function of Dt/s0 .
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flow is in the incompressible limit, the characteristic velocity,
V2 = gbDTH, should be kept small [3,4]. In this study, V2 = 0.1 and
the Prandtl number Pr = 0.71 are applied during simulations. Thus,
m and a can be uniquely determined for each Rayleigh number
TLBM simulation

Clever and Busse (1974)

Empirical formula: 1.56(Ra/Rac)
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Fig. 3. Illustrations of heat conduction calculations: (a) steady-state on the lower
isothermal boundary in horizontal direction (Ra = 10,000), (b) in vertical direction,
and (c) Nusselt number as function of Ra for Pr = 0.71.
Ra = gbDTH3/ma once H is given. As for the geometry of the lattice,
since the wavelength for the lowest critical Rayleigh number,
Rac = 1707.762 is about 2 for nonslip boundaries [8], the aspect ra-
tio, L/H = 2, is set in this work. Different numbers of nodes were
tested and the results were similar. The results presented here
are Nx � Ny = 80 � 41 for the periodic side boundary conditions.
The temperatures at the lower and upper plates are set 2 and 1,
respectively. The temperature difference, DT, is then normalized
to one. The system starts from the static conductive conditions
with initial small random perturbations of order 10�4 in fi.

The temperature gradient is examined according to Eq. (1). To
authors’ knowledge, no literatures verified temperature gradient
by this native method of TLBM. Fig. 3(a) shows the TLBM native
calculations of steady-state temperature gradients in x direction
on the lower isothermal boundary for Ra = 104. Theoretically the
temperature gradient along the isothermal surface should be zero.
But the calculations by the native method of TLBM showed that if
the boundary conditions are not properly imposed, the tempera-
ture gradient would not vanish even the temperatures are uniform
on the boundary. One can see that from the microscopic point of
view the non-equilibrium bounce-back scheme cannot meet the
uniform temperature and zero temperature gradient at the same
time.

Fig. 3(b) shows the steady-state temperature gradients in the ver-
tical direction on the lower boundary. Such information can be used
to determine the Nusselt number. The average Nusselt number (Nu)
is in fact the ratio of the average vertical heat flux on the boundary to
the static conductive heat flux (=kDT/H). Fig. 3(c) presents the aver-
age Nusselt number at steady state as a function of Ra for Pr = 0.71. It
shows good agreement with the work done by Clever and Busse [9].
This calculation should be more realistic since it resembles the
experimental determination of Nu [10]. Besides, the computational
load can be reduced significantly compared with other works [2] be-
cause no averaging over the whole domain is needed.

5. Conclusions

We proposed a new non-equilibrium mirror-reflection
scheme of second order of accuracy for thermal boundaries in
TLBM. Compared with the common non-equilibrium bounce-
back scheme, the non-equilibrium mirror-reflection scheme
can satisfy more requirements when the predictions of heat flux
are examined. This manifests the importance of heat flux as well
as temperature to evaluate numerical models for thermal sys-
tems. The present work is also the first one to verify the temper-
ature gradient by the native method of TLBM. In addition, We
demonstrated an efficient and realistic way to determine the
Nusselt number for RB convection by calculating the heat flux
on the boundaries. Not only does it resemble the real physical
measurements, it can reduce significantly the computational
load because only boundary nodes are involved instead of aver-
aging over the whole domain.
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